Problem: and(tt(),X) -> activate(X) plus(N,0()) -> N plus(N,s(M)) -> s(plus(N,M)) activate(X) -> X Proof: Bounds Processor: bound: 1 enrichment: match automaton: final states: {6,5,4} transitions: s1(7) -> 7,5 plus1(3,1) -> 7* plus1(3,3) -> 7* plus1(1,2) -> 7* plus1(2,1) -> 7* plus1(2,3) -> 7* plus1(3,2) -> 7* plus1(1,1) -> 7* plus1(1,3) -> 7* plus1(2,2) -> 7* activate1(2) -> 4* activate1(1) -> 4* activate1(3) -> 4* and0(3,1) -> 4* and0(3,3) -> 4* and0(1,2) -> 4* and0(2,1) -> 4* and0(2,3) -> 4* and0(3,2) -> 4* and0(1,1) -> 4* and0(1,3) -> 4* and0(2,2) -> 4* tt0() -> 1* activate0(2) -> 6* activate0(1) -> 6* activate0(3) -> 6* plus0(3,1) -> 5* plus0(3,3) -> 5* plus0(1,2) -> 5* plus0(2,1) -> 5* plus0(2,3) -> 5* plus0(3,2) -> 5* plus0(1,1) -> 5* plus0(1,3) -> 5* plus0(2,2) -> 5* 00() -> 2* s0(2) -> 3* s0(1) -> 3* s0(3) -> 3* 1 -> 4,7,6,5 2 -> 4,7,6,5 3 -> 4,7,6,5 problem: Qed