Problem:
and(tt(),X) -> activate(X)
plus(N,0()) -> N
plus(N,s(M)) -> s(plus(N,M))
activate(X) -> X
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {6,5,4}
transitions:
s1(7) -> 7,5
plus1(3,1) -> 7*
plus1(3,3) -> 7*
plus1(1,2) -> 7*
plus1(2,1) -> 7*
plus1(2,3) -> 7*
plus1(3,2) -> 7*
plus1(1,1) -> 7*
plus1(1,3) -> 7*
plus1(2,2) -> 7*
activate1(2) -> 4*
activate1(1) -> 4*
activate1(3) -> 4*
and0(3,1) -> 4*
and0(3,3) -> 4*
and0(1,2) -> 4*
and0(2,1) -> 4*
and0(2,3) -> 4*
and0(3,2) -> 4*
and0(1,1) -> 4*
and0(1,3) -> 4*
and0(2,2) -> 4*
tt0() -> 1*
activate0(2) -> 6*
activate0(1) -> 6*
activate0(3) -> 6*
plus0(3,1) -> 5*
plus0(3,3) -> 5*
plus0(1,2) -> 5*
plus0(2,1) -> 5*
plus0(2,3) -> 5*
plus0(3,2) -> 5*
plus0(1,1) -> 5*
plus0(1,3) -> 5*
plus0(2,2) -> 5*
00() -> 2*
s0(2) -> 3*
s0(1) -> 3*
s0(3) -> 3*
1 -> 4,7,6,5
2 -> 4,7,6,5
3 -> 4,7,6,5
problem:
Qed